Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 283(19): 3587-3603, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27486859

RESUMO

The human dimethylglycine dehydrogenase (hDMGDH) is a flavin adenine dinucleotide (FAD)- and tetrahydrofolate (THF)-dependent, mitochondrial matrix enzyme taking part in choline degradation, one-carbon metabolism and electron transfer to the respiratory chain. The rare natural variant H109R causes dimethylglycine dehydrogenase deficiency leading to increased blood and urinary dimethylglycine concentrations. A detailed biochemical and structural characterization of hDMGDH was thus far hampered by insufficient heterologous expression of the protein. In the present study, we report the development of an intracellular, heterologous expression system in Komagataella phaffii (formerly known as Pichia pastoris) providing the opportunity to determine kinetic parameters, spectroscopic properties, thermostability, and the redox potential of hDMGDH. Moreover, we have successfully crystallized the wild-type enzyme and determined the structure to 3.1-Å resolution. The structure-based analysis of our biochemical data provided new insights into the kinetic properties of the enzyme in particular with respect to oxygen reactivity. A comparative study with the H109R variant demonstrated that the variant suffers from decreased protein stability, cofactor saturation, and substrate affinity. DATABASE: Structural data are available in the PDB database under the accession number 5L46.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Dimetilglicina Desidrogenase/química , Dimetilglicina Desidrogenase/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Mutação Puntual , Dimetilglicina Desidrogenase/isolamento & purificação , Dimetilglicina Desidrogenase/metabolismo , Humanos , Cinética , Proteínas Mitocondriais/isolamento & purificação , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Oxirredução , Domínios Proteicos , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
2.
Oncotarget ; 7(22): 32607-16, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27119355

RESUMO

Key metabolic enzymes regulatethe fluxes of small compounds to provide the basal substrates for cellular architecture and energy. Some of them are reported to be important carcinogenesis- and metastasis-related genes. In our work, we performed RNA-seq for50 pairs of normal-tumor of hepatocellular carcinoma (HCC) samples and found that the expression of dimethylglycine dehydrogenase (DMGDH) is decreased in HCC. The analysis of protein levels with Western blotting and immunohistochemistry also conformed our findings. It is proven to be a valuable biomarker for both diagnosis and prognosis in three independent datasets. Furthermore, we revealed that DMGDH suppresses migration, invasion and metastasis both in vitro and in vivo. By utilizing gene expression microarray for DMGDH, we identified several possible pathways altered in a DMGDH over-expressing cell line. Among these pathways, we noted that the phosphorylation of Akt-308/473 was significantly suppressed when DMGDH was over-expressed. In summary, our work reveals that DMGDH is a potential valuable biomarker for both diagnosis and prognosisfor HCC, and DMGDH gene expression suppresses metastasis through the Akt signaling pathway.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/enzimologia , Dimetilglicina Desidrogenase/metabolismo , Neoplasias Hepáticas/enzimologia , Proteínas Mitocondriais/metabolismo , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Proliferação de Células/fisiologia , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida
3.
Biochem Biophys Res Commun ; 449(4): 392-8, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24858690

RESUMO

Dimethylglycine dehydrogenase (DMGDH) is a mammalian mitochondrial enzyme which plays an important role in the utilization of methyl groups derived from choline. DMGDH is a flavin containing enzyme which catalyzes the oxidative demethylation of dimethylglycine in vitro with the formation of sarcosine (N-methylglycine), hydrogen peroxide and formaldehyde. DMGDH binds tetrahydrofolate (THF) in vivo, which serves as an acceptor of formaldehyde and in the cell the product of the reaction is 5,10-methylenetetrahydrofolate instead of formaldehyde. To gain insight into the mechanism of the reaction we solved the crystal structures of the recombinant mature and precursor forms of rat DMGDH and DMGDH-THF complexes. Both forms of DMGDH reveal similar kinetic parameters and have the same tertiary structure fold with two domains formed by N- and C-terminal halves of the protein. The active center is located in the N-terminal domain while the THF binding site is located in the C-terminal domain about 40Å from the isoalloxazine ring of FAD. The folate binding site is connected with the enzyme active center via an intramolecular channel. This suggests the possible transfer of the intermediate imine of dimethylglycine from the active center to the bound THF where they could react producing a 5,10-methylenetetrahydrofolate. Based on the homology of the rat and human DMGDH the structural basis for the mechanism of inactivation of the human DMGDH by naturally occurring His109Arg mutation is proposed.


Assuntos
Dimetilglicina Desidrogenase/química , Proteínas Mitocondriais/química , Tetra-Hidrofolatos/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Dimetilglicina Desidrogenase/metabolismo , Humanos , Cinética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ratos , Sarcosina/análogos & derivados , Tetra-Hidrofolatos/metabolismo
4.
Am J Physiol Gastrointest Liver Physiol ; 304(9): G835-46, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23449672

RESUMO

Betaine critically contributes to the control of hepatocellular hydration and provides protection of the liver from different kinds of stress. To investigate how the hepatocellular hydration state affects gene expression of enzymes involved in the metabolism of betaine and related organic osmolytes, we used quantitative RT-PCR gene expression studies in rat hepatoma cells as well as metabolic and gene expression profiling in primary hepatocytes of both wild-type and 5,10-methylenetetrahydrofolate reductase (MTHFR)-deficient mice. Anisotonic incubation caused coordinated adaptive changes in the expression of various genes involved in betaine metabolism, in particular of betaine homocysteine methyltransferase, dimethylglycine dehydrogenase, and sarcosine dehydrogenase. The expression of betaine-degrading enzymes was downregulated by cell shrinking and strongly induced by an increase in cell volume under hypotonic conditions. Metabolite concentrations in the culture system changed accordingly. Expression changes were mediated through tyrosine kinases, cyclic nucleotide-dependent protein kinases, and JNK-dependent signaling. Assessment of hepatic gene expression using a customized microarray chip showed that hepatic betaine depletion in MTHFR(-/-) mice was associated with alterations that were comparable to those induced by cell swelling in hepatocytes. In conclusion, the adaptation of hepatocytes to changes in cell volume involves the coordinated regulation of betaine synthesis and degradation and concomitant changes in intracellular osmolyte concentrations. The existence of such a well-orchestrated response underlines the importance of cell volume homeostasis for liver function and of methylamine osmolytes such as betaine as hepatic osmolytes.


Assuntos
Betaína-Homocisteína S-Metiltransferase/metabolismo , Betaína/metabolismo , Dimetilglicina Desidrogenase/metabolismo , Fígado/metabolismo , Concentração Osmolar , Sarcosina Desidrogenase/metabolismo , Animais , Tamanho Celular/efeitos dos fármacos , Neoplasias Hepáticas Experimentais , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Camundongos , Camundongos Transgênicos , Osmose , RNA Mensageiro/metabolismo , Ratos , Transcriptoma , Células Tumorais Cultivadas
6.
Int J Biol Macromol ; 42(5): 455-62, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18423846

RESUMO

The precursor of the rat mitochondrial flavoenzyme dimethylglycine dehydrogenase (Me(2)GlyDH) has been produced in Escherichia coli as a C-terminally 6-His-tagged fusion protein, purified by one-step affinity chromatography and identified by ESI-MS/MS. It was correctly processed into its mature form upon incubation with solubilized rat liver mitoplasts. The purified precursor was mainly in its apo-form as demonstrated by immunological and fluorimetric detection of covalently bound flavin adenine dinucleotide (FAD). Results described here definitively demonstrate that: (i) covalent attachment of FAD to Me(2)GlyDH apoenzyme can proceed in vitro autocatalytically, without third reactants; (ii) the removal of mitochondrial presequence by mitochondrial processing peptidase is not required for covalent autoflavinylation.


Assuntos
Dimetilglicina Desidrogenase/isolamento & purificação , Dimetilglicina Desidrogenase/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/isolamento & purificação , Proteínas Mitocondriais/metabolismo , Sequência de Aminoácidos , Animais , Catálise , Clonagem Molecular , Dimetilglicina Desidrogenase/química , Dimetilglicina Desidrogenase/genética , Expressão Gênica , Espectrometria de Massas , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrofotometria
7.
FEBS J ; 274(8): 2070-87, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17371548

RESUMO

Two ORFs encoding a protein related to bacterial dimethylglycine oxidase were cloned from Pyrococcus furiosus DSM 3638. The protein was expressed in Escherichia coli, purified, and shown to be a flavoprotein amine dehydrogenase. The enzyme oxidizes the secondary amines L-proline, L-pipecolic acid and sarcosine, with optimal catalytic activity towards L-proline. The holoenzyme contains one FAD, FMN and ATP per alphabeta complex, is not reduced by sulfite, and reoxidizes slowly following reduction, which is typical of flavoprotein dehydrogenases. Isolation of the enzyme in a form containing only FAD cofactor allowed detailed pH dependence studies of the reaction with L-proline, for which a bell-shaped dependence (pK(a) values 7.0 +/- 0.2 and 7.6 +/- 0.2) for k(cat)/K(m) as a function of pH was observed. The pH dependence of k(cat) is sigmoidal, described by a single macroscopic pK(a) of 7.7 +/- 0.1, tentatively attributed to ionization of L-proline in the Michaelis complex. The preliminary crystal structure of the enzyme revealed active site residues conserved in related amine dehydrogenases and potentially implicated in catalysis. Studies with H225A, H225Q and Y251F mutants ruled out participation of these residues in a carbanion-type mechanism. The midpoint potential of enzyme-bound FAD has a linear temperature dependence (- 3.1 +/- 0.05 mV x C degrees (-1)), and extrapolation to physiologic growth temperature for P. furiosus (100 degrees C) yields a value of - 407 +/- 5 mV for the two-electron reduction of enzyme-bound FAD. These studies provide the first detailed account of the kinetic/redox properties of this hyperthermophilic L-proline dehydrogenase. Implications for its mechanism of action are discussed.


Assuntos
Dimetilglicina Desidrogenase/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Prolina Oxidase/metabolismo , Pyrococcus furiosus/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Flavina-Adenina Dinucleotídeo/metabolismo , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Oxirredução , Ácidos Pipecólicos/metabolismo , Prolina/metabolismo , Prolina Oxidase/química , Subunidades Proteicas , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...